منابع مشابه
Rough Diamonds in Natural Language Learning
Machine Learning of Natural Language provides a rich environment for exploring supervised and unsupervised learning techniques including soft clustering and rough sets. This keynote presentation will trace the course of our Natural Language Learning as well as some quite intriguing spin-off applications. The focus of the paper will be learning, by both human and computer, reinterpreting our wor...
متن کاملromantic education:reading william wordsworths the prelude in the light of the history of ideas
عصر روشنگری زمان شکل گیری ایده های مدرن تربیتی- آموزشی بود اما تاکید بیش از اندازه ی دوشاخه مهم فلسفی زمان یعنی عقل گرایی و حس گرایی بر دقت و وضوح، انسان عصر روشنگری را نسبت به دیگر تواناییهایش نابینا کرده و موجب به وجود آمدن افرادی تک بعدی شد که افتخارعقلانیتشان، تاکید شان بر تجربه فردی، به مبارزه طلبیدن منطق نیاکانشان وافسون زدایی شان از دنیا وتمام آنچه با حواس پنجگانه قابل درک نبوده و یا در ...
Natural-color Yellow Diamonds
widely encountered of the “fancy color” diamonds (figure 1). From 1998 to the present, GIA has issued grading reports on more than 100,000 yellow diamonds, by far the most common of the fancy-color diamonds submitted to our laboratory. In 2003, for example, 58% of the diamonds submitted for GIA Colored Diamond Grading Reports or Colored Diamond Identification and Origin of Color Reports were in...
متن کاملDiamonds in the Rough: Event Extraction from Imperfect Microblog Data
We introduce a distantly supervised event extraction approach that extracts complex event templates from microblogs. We show that this near real-time data source is more challenging than news because it contains information that is both approximate (e.g., with values that are close but different from the gold truth) and ambiguous (due to the brevity of the texts), impacting both the evaluation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2012
ISSN: 0028-0836,1476-4687
DOI: 10.1038/492354a